|
Atomistry » Chlorine » PDB 6q96-6qig » 6qfx | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomistry » Chlorine » PDB 6q96-6qig » 6qfx » |
Chlorine in PDB 6qfx: Human Carbonic Anhydrase II with Bound Ircp* Complex (Cofactor 10) to Generate An Artificial Transfer Hydrogenase (Athase)Enzymatic activity of Human Carbonic Anhydrase II with Bound Ircp* Complex (Cofactor 10) to Generate An Artificial Transfer Hydrogenase (Athase)
All present enzymatic activity of Human Carbonic Anhydrase II with Bound Ircp* Complex (Cofactor 10) to Generate An Artificial Transfer Hydrogenase (Athase):
4.2.1.1; Protein crystallography data
The structure of Human Carbonic Anhydrase II with Bound Ircp* Complex (Cofactor 10) to Generate An Artificial Transfer Hydrogenase (Athase), PDB code: 6qfx
was solved by
J.G.Rebelein,
with X-Ray Crystallography technique. A brief refinement statistics is given in the table below:
Other elements in 6qfx:
The structure of Human Carbonic Anhydrase II with Bound Ircp* Complex (Cofactor 10) to Generate An Artificial Transfer Hydrogenase (Athase) also contains other interesting chemical elements:
Chlorine Binding Sites:
The binding sites of Chlorine atom in the Human Carbonic Anhydrase II with Bound Ircp* Complex (Cofactor 10) to Generate An Artificial Transfer Hydrogenase (Athase)
(pdb code 6qfx). This binding sites where shown within
5.0 Angstroms radius around Chlorine atom.
In total only one binding site of Chlorine was determined in the Human Carbonic Anhydrase II with Bound Ircp* Complex (Cofactor 10) to Generate An Artificial Transfer Hydrogenase (Athase), PDB code: 6qfx: Chlorine binding site 1 out of 1 in 6qfxGo back to![]() ![]()
Chlorine binding site 1 out
of 1 in the Human Carbonic Anhydrase II with Bound Ircp* Complex (Cofactor 10) to Generate An Artificial Transfer Hydrogenase (Athase)
![]() Mono view ![]() Stereo pair view
Reference:
J.G.Rebelein,
Y.Cotelle,
B.Garabedian,
T.R.Ward.
Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase As Host Protein. Acs Catalysis V. 9 4173 2019.
Page generated: Mon Jul 29 13:56:34 2024
ISSN: ESSN 2155-5435 PubMed: 31080690 DOI: 10.1021/ACSCATAL.9B01006 |
Last articlesZn in 9J0NZn in 9J0O Zn in 9J0P Zn in 9FJX Zn in 9EKB Zn in 9C0F Zn in 9CAH Zn in 9CH0 Zn in 9CH3 Zn in 9CH1 |
© Copyright 2008-2020 by atomistry.com | ||
Home | Site Map | Copyright | Contact us | Privacy |